
M.Sc. [Information Technology]
313 14

LAB: OBJECT ORIENTED
PROGRAMMING AND JAVA

I - Semester

You are instructed to update the cover page as mentioned below:

1. Increase the font size of the Course Name.

2. use the following as a header in the Cover Page.

ALAGAPPA UNIVERSITY
[Accredited with ’A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

KARAIKUDI – 630 003
DIRECTORATE OF DISTANCE EDUCATION

You are instructed to update the cover page as mentioned below:

1. Increase the font size of the Course Name.

2. use the following as a header in the Cover Page.

ALAGAPPA UNIVERSITY
[Accredited with ’A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

KARAIKUDI – 630 003
DIRECTORATE OF DISTANCE EDUCATION

M.Sc. [Information Technology]
313 14

LAB: OBJECT ORIENTED
PROGRAMMING AND JAVA

I - Semester

You are instructed to update the cover page as mentioned below:

1. Increase the font size of the Course Name.

2. use the following as a header in the Cover Page.

ALAGAPPA UNIVERSITY
[Accredited with ’A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

KARAIKUDI – 630 003
DIRECTORATE OF DISTANCE EDUCATION

You are instructed to update the cover page as mentioned below:

1. Increase the font size of the Course Name.

2. use the following as a header in the Cover Page.

ALAGAPPA UNIVERSITY
[Accredited with ’A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

KARAIKUDI – 630 003
DIRECTORATE OF DISTANCE EDUCATION

M.Sc. [Information Technology]
I - Semester

313 14

Directorate of Distance Education

LAB: OBJECT ORIENTED
PROGRAMMING AND JAVA

ALAGAPPA UNIVERSITY
[Accredited with ‘A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

(A State University Established by the Government of Tamil Nadu)

KARAIKUDI – 630 003

All rights reserved. No part of this publication which is material protected by this copyright notice
may be reproduced or transmitted or utilized or stored in any form or by any means now known or
hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording
or by any information storage or retrieval system, without prior written permission from the Alagappa
University, Karaikudi, Tamil Nadu.

Information contained in this book has been published by VIKAS® Publishing House Pvt. Ltd. and has
been obtained by its Authors from sources believed to be reliable and are correct to the best of their
knowledge. However, the Alagappa University, Publisher and its Authors shall in no event be liable for
any errors, omissions or damages arising out of use of this information and specifically disclaim any
implied warranties or merchantability or fitness for any particular use.

Vikas® is the registered trademark of Vikas® Publishing House Pvt. Ltd.

VIKAS® PUBLISHING HOUSE PVT. LTD.
E-28, Sector-8, Noida - 201301 (UP)
Phone: 0120-4078900  Fax: 0120-4078999
Regd. Office: 7361, Ravindra Mansion, Ram Nagar, New Delhi 110 055
 Website: www.vikaspublishing.com  Email: helpline@vikaspublishing.com

Work Order No. AU/DDE/DE1-238/Preparation and Printing of Course Materials/2018 Dated 30.08.2018 Copies - 500

"The copyright shall be vested with Alagappa University"

Author

Dr. Kavita Saini, Assistant Professor, School of Computer Science & Engineering, Galgotias University, Greater Noida.

LAB: OBJECT ORIENTED PROGRAMMING AND JAVA

BLOCK 1 : JAVA FUNDAMENTAL PROBLEMS

1. Simple Java Problems
2. Class and objects
3. Conditional control using java
4. Looping using java

BLOCK 2 : OOP CONCEPTS

5. Function overloading programs
6. Operator overloading programs
7. Inheritance programs, Packages
8. Polymorphism programs, Message passing programs

BLOCK 3 : THREAD & VIRTUAL FUNCTION

9. Threads
10. Virtual function programs

BLOCK 4 : I/O AND EXCEPTION HANDLING

11. Exception handling programs
12. I/O manipulation programs,

BLOCK 5 :NETWORK PROGRAMMING

13. Applet programs
14. Implementation of simple network programs using java

Syllabi

Introduction

NOTES

Self-Instructional
4 Material

INTRODUCTION

Java is a third generation programming language which implements the concept of
Object-Oriented Programming (OOPs). It inherits many features of the existing
languages, C and C++, along with the addition of new features, making it a simple
object-oriented language that is also easy to learn. Java can either have single or
compound statements. Java has control statements that are broadly classified into
three categories, namely conditional statements, iteration statements and jump
statements. The main objective of object-oriented programming is to present various
real-world objects as program elements. All concepts related to object-oriented
programming, such as data abstraction, encapsulation, inheritance and
polymorphism, are implemented with the help of classes. Working with actual
data requires a mechanism that deals with a collection of data items. In Java,
different data types like arrays and vectors are offered to handle such collections.

This lab manual, Object Oriented Programming and Java, contains several
programs based on java concepts, such as classes, function overloading, operator
overloading, threads, exception handling and applet to provide the concept of
programming. In addition, it will help students in coding and debugging their
programs. The manual provides all logical, mathematical and conceptual programs
that can help to write programs very easily in java language. These exercises shall
be taken as the base reference during lab activities for students. There are also
many Try Yourself Questions provided to students for implementation in the lab.

NOTES

Self-Instructional
Material 1

Lab: Object Oriented
Programming and Java

LAB REQUIREMENTS:

To write and run a java program, you need to install a software like J2SDK 1.7.
SDK stands for system development kit. SDK is also known as JDK (Java
Development Kit) which contains JRE (Java Runtime Environment). It provides a
platform that enables the program to run on your computer.

Following are the steps given below that explains how to write and execute
a java program.

Step 1: Write a Java code using text editor (notepad).

1. Write a program to print hello java.

//main class

public class Sample1

{

 public static void main(String args[])

{

System.out.println(“Hello Java”);

 }

}

Step 2: Save the file as Sample1.java. We have named the file as Sample1, the
thing is that we should always name the file same as the public classname. In our
program, the public class name is Sample1. So, our file name should
be Sample1.java.

Step 3: Set environment variable.

Follow the steps to set the environment variable:

Right Click on MyComputer  Properties  Advanced System settings  Inside
Advanced tab

Click Environment variables  Inside System Vaiables click New  Give variable
name (For example var)  Give variable value. It is path in your system where
java compiler is available (For example variable value :C:\Program
Files\Java\jdk1.6.0_23\bin). Inside bin javac is Java compiler.

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
2 Material

Click Ok.

Step 4: Go to command prompt by using start  Run  cmd OR start  type
cmd in search program and file.

Step 5: Write following command for compilation of program.

javac Sample1.java

Step 6: To run program use, the following command.

java Sample1

Output:

2. Write a program to add two integers and print it on the screen.

public class AddTwoIntegers

{

 public static void main(String[] args)

 {

 int first = 10;

 int second = 20;

 int sum = first + second;

System.out.println(“The sum is: “ + sum);

 }

}

NOTES

Self-Instructional
Material 3

Lab: Object Oriented
Programming and Java

Output:

3. Write a program to multiply two floating point numbers.

public class MultiplyTwoNumbers

 {

 public static void main(String[] args)

 {

 float first = 1.5f;

 float second = 2.0f;

 float product = first * second;

System.out.println (“The product is: “ + product);

 }

}

Output:

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
4 Material

4. Write a program to swap two numbers using a temporary variable.

public class SwapNumbers

 {

 public static void main(String[] args)

{

 float first = 1.20f, second = 2.45f;

System.out.println(“—Before swap—”);

System.out.println(“First number = “ + first);

System.out.println(“Second number = “ + second);

 // Value of first is assigned to temporary

float temporary = first;

 // Value of second is assigned to first

first = second;

 // Value of temporary (which contains the initial
value of first) is assigned to second

second = temporary;

System.out.println(“—After swap—”);

System.out.println(“First number = “ + first);

System.out.println(“Second number = “ + second);

 }

}

NOTES

Self-Instructional
Material 5

Lab: Object Oriented
Programming and Java

Output:

5. Write a program to print the largest number among the three numbers.

public class Largest

 {

 public static void main(String[] args)

{

 double n1 = -4.5, n2 = 3.9, n3 = 2.5;

if (n1 >= n2 && n1 >= n3)

System.out.println(n1 + “ is the largest number.”);

else if (n2 >= n1 && n2 >= n3)

System.out.println (n2 + “ is the largest number.”);

else

System.out.println (n3 + “ is the largest number.”);

 }

}

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
6 Material

Output:

Try yourself:

1. Write a Java program to divide two numbers and print on the screen.

2. Write a Java program to print the result of the following operations.

a. -5 + 8 * 6

b. (55+9) % 9

3. Write a Java program to print the sum (addition), multiply, subtract, divide
and remainder of two numbers

4. Write a Java program to print the area and perimeter of a circle.

6. Write a program to demonstrate the implementation of class, object
and constructor.

//main class

public class Puppy

{

// This constructor has one parameter, name.

 public Puppy(String name)

{

System.out.println(“Passed Name is :” + name);

 }

 public static void main(String []args)

 {

 // Following statement would create an object myPuppy

 Puppy myPuppy = new Puppy (“tommy”);

 }

}

NOTES

Self-Instructional
Material 7

Lab: Object Oriented
Programming and Java

Output:

7. Write a program to demonstrate initialization of an object.

// Class Declaration

public class Dog

{

 // Instance Variables

 String name;

 String breed;

 int age;

 String color;

 // Constructor Declaration of Class

 public Dog(String name, String breed,

 int age, String color)

 {

 this.name = name;

this.breed = breed;

this.age = age;

this.color = color;

 }

 // method 1

 public String getName()

 {

 return name;

 }

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
8 Material

 // method 2

 public String getBreed()

 {

 return breed;

 }

 // method 3

 public int getAge()

 {

 return age;

 }

 // method 4

 public String getColor()

 {

 return color;

 }

 @Override

 public String toString()

 {

return(“Hi my name is “+ this.getName()+

 “.\nMybreed,age and color are “ +

this.getBreed()+”,” + this.getAge()+

 “,”+ this.getColor());

 }

 public static void main(String[] args)

 {

 Dog tuffy = new Dog(“tuffy”,”papillon”, 5,
“white”);

System.out.println(tuffy.toString());

 }

}

NOTES

Self-Instructional
Material 9

Lab: Object Oriented
Programming and Java

Output:

8. Write a program to declare and initialize an array.

//main class

public class Testarray

{

public static void main(String args[])

{

 //declaration of array

int a[]=new int[5];

//initialization of an array

a[0]=10;

a[1]=20;

a[2]=70;

a[3]=40;

a[4]=50;

System.out.println (“Array values are \n”);

//traversing array

//length is the property of array

for (int i=0;i<a.length;i++)

{

System.out.println (a[i]);

}

}

}

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
10 Material

Output:

Try yourself:

1. Write a java program to calculate the median of a given unsorted array of
integers.

2. Write a java program to find a number that appears only once in a given
array of integers.

3. Write a program to print the largest number in an array.

9. Write a program for accessing java array elements using for loop.

//main class

public class GFG

{

 public static void main (String[] args)

 {

 // declares an Array of integers.

int[] arr;

 // allocating memory for 5 integers.

arr = new int[5];

 // initialize the first elements of the array

arr[0] = 10;

 // initialize the second elements of the array

arr[1] = 20;

 //so on...

NOTES

Self-Instructional
Material 11

Lab: Object Oriented
Programming and Java

arr[2] = 30;

arr[3] = 40;

arr[4] = 50;

 // accessing the elements of the specified array

 for (int i = 0; i<arr.length; i++)

System.out.println(“Element at index “ + i + “ : “+
arr[i]);

 }

}

Output:

10. Write a program to add two matrices.

import java.util.Scanner;

class AddTwoMatrix

{

 public static void main(String args[])

 {

int m, n, c, d;

Scanner in = new Scanner (System.in);

System.out.println (“Enter the number of rows and
columns of matrix”);

 m = in.nextInt ();

n =in.nextInt ();

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
12 Material

 int first[][] = new int[m][n];

 int second[][] = new int[m][n];

 int sum[][] = new int[m][n];

System.out.println(“Enter the elements of first matrix”);

 for (c = 0; c < m; c++)

 for (d = 0; d < n; d++)

 first[c][d] = in.nextInt();

System.out.println(“Enter the elements of second matrix”);

 for (c = 0 ; c < m ; c++)

 for (d = 0 ; d < n ; d++)

 second[c][d] = in.nextInt();

 for (c = 0; c < m; c++)

 for (d = 0; d < n; d++)

 sum[c][d] = first[c][d] + second[c][d];

//replace ‘+’ with ‘-’ to subtract matrices

System.out.println(“Sum of the matrices:”);

 for (c = 0; c < m; c++)

 {

 for (d = 0; d < n; d++)

System.out.print(sum[c][d]+”\t”);

System.out.println();

 }

 }

}

NOTES

Self-Instructional
Material 13

Lab: Object Oriented
Programming and Java

Output:

11. Write a program to subtract two matrices.

import java.util.Scanner;

public class MatrixSubtraction

 {

 public static void main(String[] args)

 {

 Scanner s = new Scanner(System.in);

System.out.println(“Enter the number of rows”);

 int rows = s.nextInt();

System.out.println(“Enter the number of columns”);

 int columns = s.nextInt();

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
14 Material

 int matrix1[][] = new int[rows][columns];

 int matrix2[][] = new int[rows][columns];

 int sub[][] = new int[rows][columns];

System.out.println(“Enter the elements of first matrix
:”);

 for (int i = 0; i< rows; i++) {

 for (int j = 0; j < columns; j++) {

 matrix1[i][j] = s.nextInt();

 }

 }

System.out.println (“Enter the elements of second matrix
:”);

 for (int i = 0; i< rows; i++) {

 for (int j = 0; j < columns; j++) {

 matrix2 [i][j] = s.nextInt();

 }

 }

 for (int i = 0; i< rows; i++) {

 for (int j = 0; j < columns; j++) {

 sub [i][j] = matrix1[i][j] - matrix2[i][j];

 }

 }

System.out.println (“The subtraction of the two matrices
is :”);

 for (int i = 0; i< rows; i++) {

 for (int j = 0; j < columns; j++)

{

NOTES

Self-Instructional
Material 15

Lab: Object Oriented
Programming and Java

System.out.print (“\t” + sub[i][j]);

 }

System.out.println ();

 }

s.close();

 }

}

Output:

12. Write a program to multiply two matrices.

import java.util.Scanner;

public class MatrixMultiplication

{

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
16 Material

 public static void main(String args[])

 {

 int m, n, p, q, sum = 0, i, j, k;

 Scanner in = new Scanner (System.in);

System.out.println(“Enter the number of rows and columns
of first matrix”);

 m = in.nextInt();

 n = in.nextInt();

 int first[][] = new int[m][n];

System.out.println (“Enter elements of first matrix”);

 for (i = 0; i < m; i++)

 for (j = 0; j < n; j++)

 first [i][j] = in.nextInt();

System.out.println (“Enter the number of rows and columns
of second matrix”);

 p = in.nextInt ();

 q = in.nextInt ();

 if (n != p)

System.out.println (“The matrices can’t be multiplied
with each other.”);

 else

 {

 int second[][] = new int[p][q];

 int multiply[][] = new int[m][q];

NOTES

Self-Instructional
Material 17

Lab: Object Oriented
Programming and Java

System.out.println(“Enter elements of second matrix”);

 for (i = 0; i < p; i++)

 for (j = 0; j < q; j++)

 second [i][j] = in.nextInt();

 for (i = 0; i < m; i++)

 {

 for (j = 0; j < q; j++)

 {

 for (k = 0; k < p; k++)

 {

 sum = sum + first[i][k]*second[k][j];

 }

 multiply [i][j] = sum;

 sum = 0;

 }

 }

System.out.println (“Product of the matrices:”);

 for (i = 0; i < m; i++)

 {

 for (j = 0; j < q; j++)

System.out.print(multiply[i][j]+”\t”);

System.out.print(“\n”);

 }

 }

 }

}

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
18 Material

Output:

13. Write a program to print transpose of a matrix.

import java.util.Scanner;

public class Transpose

{

 public static void main(String args[])

 {

 int i, j;

System.out.println(“Enter total rows and columns: “);

 Scanner s = new Scanner (System.in);

 int row = s.nextInt();

 int column = s.nextInt();

 int array[][] = new int[row][column];

System.out.println (“Enter matrix:”);

NOTES

Self-Instructional
Material 19

Lab: Object Oriented
Programming and Java

for (i = 0; i< row; i++)

 {

for(j = 0; j < column; j++)

 {

 array [i][j] = s.nextInt();

System.out.print (“ “);

 }

 }

System.out.println (“The above matrix before Transpose
is “);

for (i = 0; i< row; i++)

 {

for (j = 0; j < column; j++)

 {

System.out.print (array[i][j]+” “);

 }

System.out.println (“ “);

 }

System.out.println(“The above matrix after Transpose is
“);

for (i = 0; i< column; i++)

 {

for (j = 0; j < row; j++)

 {

System.out.print(array[j][i]+” “);

 }

System.out.println(“ “);

 }

 }

}

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
20 Material

Output:

Try yourself:

1. Write a program to print sum of diagonal values of a square Matrix.

2. Write a program to find highest and lowest element of a Matrix.

3. Write a java program that searches a value in an m x n matrix.

4. Write a program to calculate area of a circle, a rectangle or a triangle
depending on input using overloaded calculate function.

14. Write a program to check an integer is less than 20 using if.

//main class

public class Test

 {

 public static void main(String args[])

 {

NOTES

Self-Instructional
Material 21

Lab: Object Oriented
Programming and Java

 int x = 10;

if(x< 20)

 {

System.out.print(“Value of x is less than 20”);

 }

 }

}

Output:

15. Write a program to check an integer is less than 20 using if and else
and print suitable message.

//main class

public class Test

 {

 public static void main(String args[])

 {

 int x = 30;

if(x< 20)

 {

System.out.print(“Value of x is less than 20”);

}

else

{

System.out.print(“Value of x is greater than 20”);

 }

 }

}

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
22 Material

Output:

16. Write a program to compare value of an integer variable using nested
if and else if.

//main class

public class Test

{

 public static void main(String args[])

 {

 int x = 30;

if(x == 10)

{

System.out.print(“Value of X is 10”);

}

else if(x == 20)

 {

System.out.print(“Value of X is 20”);

}

else if(x == 30)

 {

System.out.print(“Value of X is 30”);

}

NOTES

Self-Instructional
Material 23

Lab: Object Oriented
Programming and Java

else

 {

System.out.print(“This is else statement”);

 }

 }

}

Output:

17. Write a program to compare value of an integer variable using nested
if.

//main class

public class Test

 {

 public static void main(String args[])

 {

 int x = 30;

 int y = 10;

if(x == 30)

 {

if(y == 10)

{

System.out.print(“X = 30 and Y = 10”);

 }

 }

 }

}

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
24 Material

Output:

Try yourself:

1. Write a Program to convert a lowercase alphabet to uppercase or vice-
versa

2. Write a Program to Check whether a year is Leap year or not

3. Write a Program to check whether a given character is uppercase or
lowercase alphabate or a digit or a special character

18. Write a program to print grade of students using switch statements.

//main clasas

public class Test

 {

 public static void main(String args[])

{

 // char grade = args[0].charAt(0);

 char grade = ‘C’;

 switch (grade)

{

case ‘A’ :

{

System.out.println(“Excellent!”);

 break;

}

case ‘B’ :

case ‘C’ :

{

NOTES

Self-Instructional
Material 25

Lab: Object Oriented
Programming and Java

System.out.println(“Well done”);

 break;

}

case ‘D’ :

{

System.out.println(“You passed”);

break;

}

case ‘F’ :

{

System.out.println(“Better try again”);

 break;

}

default :

{

System.out.println(“Invalid grade”);

break;

}

 }

System.out.println(“Your grade is “ + grade);

 }

}

Output:

19. Write a program to print numbers from 10 to 20 using while loop.

//main class

public class Test

{

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
26 Material

 public static void main(String args[])

{

 int x = 10;

while(x< 20)

 {

System.out.print(“value of x : “ + x);

 x++;

System.out.print(“\n”);

 }

 }

}

Output:

20. Write a program to print numbers from 10 to 20 using for loop.

public class Test

{

 public static void main(String args[])

{

NOTES

Self-Instructional
Material 27

Lab: Object Oriented
Programming and Java

for(int x = 10; x < 20; x = x + 1)

{

System.out.print(“value of x : “ + x);

System.out.print(“\n”);

 }

 }

}

Output:

21. Write a program to print numbers from 10 to 20 using do while
loop.

public class Test

 {

 public static void main(String args[])

 {

 int x = 10;

 do

{

System.out.print(“value of x : “ + x);

 x++;

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
28 Material

System.out.print(“\n”);

}

while(x < 20);

 }

}

Output:

22. Write a program to print sum of array using for loop.

public class SumArrayWithForLoop

 {

public static void main(String[] args)

 {

// array to sum

int[] numbers = new int[]{ 10, 10, 10, 10};

int sum = 0;

for (int i=0; i<numbers.length ; i++)

{

NOTES

Self-Instructional
Material 29

Lab: Object Oriented
Programming and Java

sum = sum + numbers[i];

}

System.out.println(“Sum value of array elements
is : “ + sum);

}

}

Output:

Try yourself:

1. Write a program to reverse a number.

2. Write a program to check whether a number is prime number or not.

3. Write a program to convert binary number to decimal number.

4. Write a program to print table of any number using do while loop.

5. Write a program to print Fibonacci Series (0, 1, 1, 2, 3, 5, 8, 13, 21,...).

6. Write a program to Print Table of any Number using for loop.

23. Write a program to illustrate the concept of function overloading.

class MyClass

{

 int height;

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
30 Material

MyClass ()

{

System.out.println(“bricks”);

 height = 0;

}

MyClass(int i)

 {

System.out.println(“Building new House that is “ + i + “
feet tall”);

 height = i;

}

 void info()

{

System.out.println(“House is “ + height + “ feet tall”);

}

 void info(String s)

 {

System.out.println(s + “: House is “ + height + “feet
tall”);

}

}

public class MainClass

{

 public static void main(String[] args)

 {

MyClass t = new MyClass(0);

 t.info();

 t.info(“overloaded method”);

 //Overloaded constructor:

 new MyClass();

 }

}

NOTES

Self-Instructional
Material 31

Lab: Object Oriented
Programming and Java

Output:

24. Write a program to overload a sum function.

public class Calculation

{

 void sum(int a,int b)

 {

 System.out.println(a+b);

}

 void sum(int a,int b,int c)

 {

 System.out.println(a+b+c);

 }

 public static void main(String args[])

{

 Calculation cal = new Calculation ();

cal.sum(20,30,60);

cal.sum(20,20);

 }

}

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
32 Material

Output:

25. Write a program to overload display function.

class DisplayOverloading

{

 public void disp(char c)

 {

System.out.println(c);

 }

 public void disp(char c, int num)

 {

System.out.println(c + “ “+num);

 }

}

public class Sample

{

 public static void main(String args[])

 {

DisplayOverloading obj = new DisplayOverloading();

obj.disp(‘a’);

obj.disp(‘a’,10);

 }

}

NOTES

Self-Instructional
Material 33

Lab: Object Oriented
Programming and Java

Output:

Try yourself:

1. Write a program that overloads comparison function where one function
will compare integer values and another comparison function will compare
float values.

2. Write a program to concatenate two strings and two characters using
overloaded function.

26. Write a program demonstrate single level inheritance in java.

class Animal

{

void eat()

{

System.out.println(“eating...”);

}

}

class Dog extends Animal

{

void bark()

{

System.out.println(“barking...”);

}

}

public class TestInheritance

{

public static void main(String args[])

{

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
34 Material

Dog d=new Dog();

d.bark();

d.eat();

}

}

Output:

27. Write a program demonstrate multiple inheritance in java.

class Animal

{

void eat()

{

System.out.println(“eating...”);

}

}

class Dog extends Animal

{

void bark()

{

System.out.println(“barking...”);

}

}

class BabyDog extends Dog

{

NOTES

Self-Instructional
Material 35

Lab: Object Oriented
Programming and Java

void weep()

{

System.out.println(“weeping...”);

}

}

public class TestInheritance2

{

public static void main(String args[])

{

BabyDog d=new BabyDog();

d.weep();

d.bark();

d.eat();

}

}

Output:

28. Write a program demonstrate hierarchical inheritance in java.

class Animal

{

void eat()

{

System.out.println(“eating...”);

}

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
36 Material

}

class Dog extends Animal

{

void bark()

{

System.out.println(“barking...”);

}

}

class Cat extends Animal

{

void meow()

{

System.out.println(“meowing...”);

}

}

public class TestInheritance3

{

public static void main(String args[])

{

Cat c=new Cat();

c.meow();

c.eat();

//c.bark();//C.T.Error

}

}

Output:

NOTES

Self-Instructional
Material 37

Lab: Object Oriented
Programming and JavaTry yourself:

1. Write a program to get and print student data using inheritance.

2. What will be the output of this program?

class A

{

int i = 10;

}

class B extends A

{

int i = 20;

}

public class MainClass

{

public static void main(String[] args)

{

A a = new B();

System.out.println(a.i);

}

}

3. What will be the output of this program?

class A

{

 {

 System.out.println(1);

 }

}

class B extends A

{

 {

 System.out.println(2);

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
38 Material

 }

}

class C extends B

{

 {

 System.out.println(3);

 }

}

public class MainClass

{

 public static void main(String[] args)

 {

 C c = new C();

 }

}

29. Write a program to demonstrate the concept of runtime polymorphism.

Animal.java

public class Animal

{

 public void sound()

{

System.out.println(“Animal is making a sound”);

 }

}

Horse.java

class Horse extends Animal

{

 @Override

 public void sound()

{

System.out.println(“Neigh”);

}

NOTES

Self-Instructional
Material 39

Lab: Object Oriented
Programming and Java

 public static void main(String args[])

{

Animal obj = new Horse();

obj.sound();

}

}

Cat.java

public class Cat extends Animal

{

 @Override

 public void sound()

{

System.out.println(“Meow”);

}

 public static void main(String args[])

{

Animal obj = new Cat();

obj.sound();

}

}

30. Write a program to demonstrate method overloading during runtime.

class Overload

{

 void demo (int a)

 {

System.out.println (“a: “ + a);

 }

 void demo (int a, int b)

 {

System.out.println (“a and b: “ + a + “,” + b);

 }

 double demo(double a)

 {

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
40 Material

System.out.println(“double a: “ + a);

 return a*a;

}

}

public class MethodOverloading

{

 public static void main (String args [])

 {

 Overload Obj = new Overload();

 double result;

Obj .demo(10);

Obj .demo(10, 20);

 result = Obj .demo(5.5);

System.out.println(“O/P : “ + result);

 }

}

Output:

31. Write a program to create and run a thread.

class RunnableDemo implements Runnable

{

 private Thread t;

 private String threadName;

RunnableDemo(String name)

{

threadName = name;

NOTES

Self-Instructional
Material 41

Lab: Object Oriented
Programming and Java

System.out.println(“Creating “ + threadName);

 }

public void run()

{

System.out.println(“Running “ + threadName);

try

{

for(int i = 4; i> 0; i—)

 {

System.out.println(“Thread: “ + threadName + “, “ + i);

 // Let the thread sleep for a while.

Thread.sleep(50);

 }

 }

 catch (InterruptedException e)

{

System.out.println(“Thread “ + threadName + “
interrupted.”);

 }

System.out.println(“Thread “ + threadName + “ exiting.”);

 }

 public void start ()

 {

System.out.println(“Starting “ + threadName);

 if (t == null)

 {

 t = new Thread (this, threadName);

t.start ();

 }

 }

}

public class TestThread

 {

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
42 Material

 public static void main(String args[])

 {

RunnableDemo R1 = new RunnableDemo(“Thread-1”);

 R1.start();

RunnableDemo R2 = new RunnableDemo(“Thread-2”);

 R2.start();

 }

}

Output:

32. Write a program to create a thread by extending the thread class.

// Java code for thread creation by extending

// the Thread class

class MultithreadingDemo extends Thread

{

 public void run()

 {

 try

 {

 // Displaying the thread that is running

System.out.println (“Thread” + Thread.currentThread
().getId () + “is running”);

NOTES

Self-Instructional
Material 43

Lab: Object Oriented
Programming and Java

 }

 catch (Exception e)

 {

 // Throwing an exception

System.out.println (“Exception is caught”);

 }

 }

}

// Main Class

public class Multithread

{

 public static void main(String[] args)

 {

 int n = 8; // Number of threads

 for (int i=0; i<8; i++)

 {

MultithreadingDemo object = new MultithreadingDemo();

object.start();

 }

 }

}

Output:

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
44 Material

33. Write a program to create a thread by implementing the runnable
Interface.

// Java code for thread creation by implementing

// the Runnable Interface

class MultithreadingDemo implements Runnable

{

 public void run()

 {

 try

 {

 // Displaying the thread that is running

System.out.println (“Thread “ +
Thread.currentThread().getId() + “ is running”);

 }

 catch (Exception e)

 {

 // Throwing an exception

System.out.println (“Exception is caught”);

 }

 }

}

// Main Class

public class Multithread

{

 public static void main(String[] args)

 {

 int n = 8; // Number of threads

 for (int i=0; i<8; i++)

 {

Thread object = new Thread(new MultithreadingDemo());

object.start();

 }

 }

}

NOTES

Self-Instructional
Material 45

Lab: Object Oriented
Programming and Java

Output:

34. Write a program to demonstrate the concept of abstract classes.

abstract class Bank

{

abstract int getRateOfInterest();

}

class SBI extends Bank

{

int getRateOfInterest(){return 7;

}

}

class PNB extends Bank

{

int getRateOfInterest(){return 8;

}

}

// Main Class

public class TestBank

{

public static void main(String args[])

{

Bank b;

b=new SBI();

System.out.println(“Rate of Interest is:

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
46 Material

“+b.getRateOfInterest()+” %”);

b=new PNB();

System.out.println(“Rate of Interest is:
“+b.getRateOfInterest()+” %”);

}

}

Output:

35. Write a program to create an abstract class having constructor, data
member and methods.

abstract class Bike

{

Bike()

{

System.out.println(“bike is created”);

}

 abstract void run();

 void changeGear()

{

System.out.println(“gear changed”);

}

 }

//Creating a Child class which inherits Abstract class

 class Honda extends Bike

{

 void run()

{

System.out.println(“running safely..”);

NOTES

Self-Instructional
Material 47

Lab: Object Oriented
Programming and Java

}

 }

//Creating a Test class which calls abstract and non-
abstract methods

 public class TestAbstraction2

{

 public static void main(String args[])

{

 Bike obj = new Honda ();

obj.run();

obj.changeGear();

 }

}

Output:

36. Write a program having try-catch block for exception handling.

// Main Class

public class Testtrycatch2

{

 public static void main(String args[])

{

try

{

 int data=50/0;

}

catch(ArithmeticException e)

{

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
48 Material

System.out.println(e);

}

System.out.println(“rest of the code...”);

}

}

Output:

37. Write a program having multiple try-catch block for exception handling.

public class TestMultipleCatchBlock

{

 public static void main(String args[])

{

try

{

 int a[]=new int[5];

a[5]=30/0;

 }

catch(ArithmeticException e)

{

System.out.println(“task1 is completed”);

}

catch(ArrayIndexOutOfBoundsException e)

{

System.out.println(“task 2 completed”);

}

NOTES

Self-Instructional
Material 49

Lab: Object Oriented
Programming and Java

catch(Exception e)

{

System.out.println(“common task completed”);

}

System.out.println(“rest of the code...”);

 }

}

Output:

38. Write a program having nested try-catch block for exception handling.

class Excep6

{

 public static void main(String args[])

{

try{

try{

System.out.println(“going to divide”);

 int b =39/0;

}

catch(ArithmeticException e){System.out.println(e);

}

try

{

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
50 Material

 int a[]=new int[5];

a[5]=4;

}

catch(ArrayIndexOutOfBoundsException e)

{

System.out.println(e);

}

System.out.println(“other statement”);

}

catch(Exception e)

{

System.out.println(“handeled”);

}

System.out.println(“normal flow..”);

 }

}

39. Write a program having try-catch with finally block.

public class TestFinallyBlock2

{

 public static void main(String args[])

{

try

{

 int data=25/0;

System.out.println(data);

 }

catch(ArithmeticException e)

{

System.out.println(e);

}

NOTES

Self-Instructional
Material 51

Lab: Object Oriented
Programming and Java

finally

{

System.out.println(“finally block is always executed”);

}

System.out.println(“rest of the code...”);

 }

}

Output:

40. Write a program to demonstrate the concept of throwing an exception.

public class TestThrow1

{

 static void validate(int age)

{

 if(age<18)

 throw new ArithmeticException(“not valid”);

 else

System.out.println(“welcome to vote”);

 }

 public static void main(String args[])

{

validate(13);

System.out.println(“rest of the code...”);

 }

}

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
52 Material

Output:

41. Write a program to copy data of one file to another file.

import java.io.*;

// Main Class

public class CopyFile

{

 public static void main(String args[]) throws
IOException

{

FileInputStream in = null;

FileOutputStream out = null;

 try

{

 in = new FileInputStream(“input.txt”);

 out = new FileOutputStream(“output.txt”);

 int c;

 while ((c = in.read()) != -1)

{

out.write(c);

 }

}

finally

 {

 if (in != null)

{

NOTES

Self-Instructional
Material 53

Lab: Object Oriented
Programming and Java

in.close();

 }

 if (out != null)

 {

out.close();

 }

 }

 }

}

Output:

42. Write a program to copy data of one file to another file using character
streams.

import java.io.*;

// Main Class

public class CopyFile

{

public static void main(String args[]) throws IOException

{

FileReader in = null;

FileWriter out = null;

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
54 Material

 try

 {

 in = new FileReader(“input.txt”);

 out = new FileWriter(“output.txt”);

 int c;

 while ((c = in.read()) != -1)

{

out.write(c);

 }

}

finally

{

 if (in != null)

{

in.close();

 }

 if (out != null)

 {

out.close();

 }

 }

 }

}

Output:

NOTES

Self-Instructional
Material 55

Lab: Object Oriented
Programming and Java

43. Write a program to write a string in file.

import java.io.FileOutputStream;

public class FileOutputStreamExample

 {

 public static void main(String args[])

{

try

{

FileOutputStreamfout=new FileOutputStream(“D:\\testout.
txt”);

String s=”Welcome to javaTpoint.”;

//converting string into byte array

 byte b[]=s.getBytes();

fout.write(b);

fout.close();

System.out.println(“success...”);

}

catch(Exception e)

{

System.out.println(e);

}

 }

}

Output:

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
56 Material

Try yourself:

1. Write a Java program to read a file content line by line.

2. Write a Java program to read a plain text file.

3. Write a java program to read a file line by line and store it into a variable.

Java AWT (Abstract Window Toolkit) is an API to develop GUI or window-
based applications in java. The java.awt package provides classes for AWT API
such as TextField, Label, TextArea, RadioButton, CheckBox, Choice, List etc.

Following are the steps to create an applet.

Step 1: Write a Java code using text editor (notepad).

44. Write a program to Create applet to print Hello World.

import java.applet.Applet;

import java.awt.Graphics;

// HelloWorld class extends Applet

public class HelloWorld extends Applet

{

 // Overriding paint() method

 @Override

 public void paint(Graphics g)

 {

g.drawString(“Hello World”, 20, 20);

 }

}

Step 2: Save the file as HelloWorld.java.

Step 3: Compiling Applets:

Javac HelloWorld.java

NOTES

Self-Instructional
Material 57

Lab: Object Oriented
Programming and Java

Step 4: Running Applet from console:

java HelloWorld

Note: Running HelloWorld with the java command will generate and error because
it is not an application.

java HelloWorld

One difference between an application and an Applet is that
applications must have a main(). Our Applet does not, so we see the error message
as:

Exception in thread “main” java.lang.NoSuchMethodError:
main

We need to create our HTML code for the Hello World Applet:

Step 1: Type in the following HTML code.

<html>

<head>

<title>Hello World </title>

</head>

<body>

<p>Hello World Applet

<applet code=”HelloWorld.class” width=300 height=200>

</applet>

</body>

</html>

Step 2: save file as HelloWorld.html

Step 3: Run the HelloWorld Applet with appletviewer.

appletviewer HelloWorld.html

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
58 Material

Output:

Note: You can also run your applet in your browser window. For the URL, type in
the path for your HTML file.

45. Write a program to draw an Arc in Applet Window.

import java.applet.Applet;

import java.awt.Color;

import java.awt.Graphics;

public class DrawArcExample extends Applet

NOTES

Self-Instructional
Material 59

Lab: Object Oriented
Programming and Java

{

public void paint(Graphics g)

{

//set color to red

setForeground(Color.red);

//this will draw an arc of width 50 & height 100 at
(10,10)

g.drawArc(10,10,50,100,10,45);

//draw filled arc

g.fillArc(100,10,100,100,0,90);

}

}

Output:

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
60 Material

46. Write a program to draw 3D rectangle and square.

import java.applet.Applet;

import java.awt.Color;

import java.awt.Graphics;

public class Draw3DRectanglesExample extends Applet

{

public void paint(Graphics g)

{

g.setColor(Color.green);

//this will draw a 3-D rectangle of width 50 &

height 100 at (10,10)

g.draw3DRect(10,10,50,100,true);

//this will draw a 3-D square

g.draw3DRect(100,100,50,50,true);

g.setColor(Color.orange);

g.fill3DRect(10,150,50,100,true);

//this will draw a filled 3-D square

g.fill3DRect(100,200,50,50,true);

}

}

NOTES

Self-Instructional
Material 61

Lab: Object Oriented
Programming and Java

Output:

Try yourself:

1. Write a program to create different shapes using applet.

2. Write a program to fill colors in shapes using applet.

47. Write a program for implementation of simple network using java.

Problem 1: Socket Client

import java.net.*;

import java.io.*;

public class GreetingClient

 {

 public static void main(String [] args)

{

 String serverName = args[0];

 int port = Integer.parseInt(args[1]);

 try

 {

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
62 Material

System.out.println(“Connecting to “ + serverName + “ on
port “ + port);

Socket client = new Socket(serverName, port);

System.out.println(“Just connected to “ +
client.getRemoteSocketAddress());

OutputStreamoutToServer = client.getOutputStream();

DataOutputStream out = new DataOutputStream(outToServer);

out.writeUTF(“Hello from “ + client.getLocalSocketAddress
());

InputStreaminFromServer = client.getInputStream();

DataInputStream in = new DataInputStream(inFromServer);

System.out.println(“Server says “ + in.readUTF());

client.close();

 }

 catch (IOException e)

{

e.printStackTrace();

 }

 }

}

Problem 2: Socket Server

import java.net.*;

import java.io.*;

public class GreetingServer extends Thread

{

 private ServerSocketserverSocket;

 public GreetingServer(int port) throws IOException

{

serverSocket = new ServerSocket(port);

serverSocket.setSoTimeout(10000);

 }

NOTES

Self-Instructional
Material 63

Lab: Object Oriented
Programming and Java

 public void run()

{

 while(true)

 {

 try

{

System.out.println(“Waiting for client on port “ +

serverSocket.getLocalPort() + “...”);

Socket server = serverSocket.accept();

System.out.println(“Just connected to “ + server.getRemote
SocketAddress());

DataInputStream in = new DataInputStream(server.
getInputStream());

System.out.println(in.readUTF());

DataOutputStream out = new DataOutputStream(server.
getOutputStream());

out.writeUTF(“Thank you for connecting to “ + server.
getLocalSocketAddress()+ “\nGoodbye!”);

server.close();

 }

 catch (SocketTimeoutException s)

 {

System.out.println(“Socket timed out!”);

 break;

 }

catch (IOException e)

{

e.printStackTrace();

 break;

 }

 }

 }

Lab: Object Oriented
Programming and Java

NOTES

Self-Instructional
64 Material

 public static void main(String [] args)

{

 int port = Integer.parseInt(args[0]);

 try {

 Thread t = new GreetingServer(port);

t.start();

 }

 catch (IOException e)

{

e.printStackTrace();

 }

 }

}

Output:

M.Sc. [Information Technology]
313 14

LAB: OBJECT ORIENTED
PROGRAMMING AND JAVA

I - Semester

You are instructed to update the cover page as mentioned below:

1. Increase the font size of the Course Name.

2. use the following as a header in the Cover Page.

ALAGAPPA UNIVERSITY
[Accredited with ’A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

KARAIKUDI – 630 003
DIRECTORATE OF DISTANCE EDUCATION

You are instructed to update the cover page as mentioned below:

1. Increase the font size of the Course Name.

2. use the following as a header in the Cover Page.

ALAGAPPA UNIVERSITY
[Accredited with ’A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

KARAIKUDI – 630 003
DIRECTORATE OF DISTANCE EDUCATION

M.Sc. [Information Technology]
313 14

LAB: OBJECT ORIENTED
PROGRAMMING AND JAVA

I - Semester

You are instructed to update the cover page as mentioned below:

1. Increase the font size of the Course Name.

2. use the following as a header in the Cover Page.

ALAGAPPA UNIVERSITY
[Accredited with ’A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

KARAIKUDI – 630 003
DIRECTORATE OF DISTANCE EDUCATION

You are instructed to update the cover page as mentioned below:

1. Increase the font size of the Course Name.

2. use the following as a header in the Cover Page.

ALAGAPPA UNIVERSITY
[Accredited with ’A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

KARAIKUDI – 630 003
DIRECTORATE OF DISTANCE EDUCATION

	313 14 _MSc-Information Tech _ Lab Object Oriented Programming and Java_Cover - Copy
	313 14_Object Oriented Programming and Java_MSc IT_ CRC
	prelims.pdf
	intro.pdf
	unit.pdf

	313 14 _MSc-Information Tech _ Lab Object Oriented Programming and Java_Cover

